Quantum Computing
My graduate alma mater made some news this week, with a new quantum teleportation experiment in which they "teleport" the state of one ytterbium ion to another ytterbium ion about a meter away. That may not sound like much, but it's the first time anybody has done this with ions in two completely separate traps, in different vacuum systems. It's also written up in Physics World, though they spell Chris Monroe's name wrong throughout.
The paper is coming out in Science, and I may try to write it up for a ResearchBlogging post over the weekend. I may also need to add it to the quantum…
The Perimeter Scholars Institute is a Masters level course designed to prepare students for cutting-edge research in theoretical physics. It looks pretty cool with some outstanding lecturers. The application deadline is February 1. All accepted students will be fully supported. Details below the fold.
Perimeter Institute for Theoretical Physics (PI) is a leading international research centre whose goal is to catalyze breakthroughs in our understanding of the physical world. PI strives to create a lively and dynamic research atmosphere where many approaches to fundamental questions, both…
Sorry to those who talked in the afternoon yesterday: I ran off to listen to Michael Nielsen talk at the Santa Fe Institute.
Charles Marcus, "Holding quantum information in electron spins"
Charlie gave a talk about the state of quantum computing in solid state quantum dot systems. Things Charlie talked about:
T1 times of single electron spins of 1 second from Mark Kastner's group:
arXiv:0707.1656. Those are long, and it would be awesome to have those for real working devices!
Delft's work on single electron spin manipulations: "Driven coherent oscillations of a single electron spin in a…
QIP 2009 started today in Santa Fe, NM. Since the conference organizers have seen it wise to include wireless access, what better excuse for a bit of liveblogging.
Andrew Landahl gave us a nice introduction to QIP and explained the New Mexico State question (I'm thinking of starting a movement in California to have a state answer. If you've ever lived in California, you'd understand.) He mentioned that New Mexico has a spaceport, but forgot to ask if anyone arrived yesterday via the spaceport. Anyone? Rosewell?
Then....let the talks begin!
Matt "Michael Phelps" Hastings, "A…
I got email last week from the Institute of Physics pointing me to a pair of video interviews with Anton Zeilinger of the University of Vienna. Zeilinger has built an impressive career out of doing fundamental tests of quantum mechanics-- he's not only got the accent and the hair to be a brilliant physicist, he's got a long list of amazing experimental papers to back it up.
They've gone the Locus route, and not included any of the questions he was responding to, which is always a little weird. Zeilinger provides enough context that everything makes sense, though, and he says some really…
Continuing the series of descriptions of candidate technologies for making a quantum computer (previous entries covered optical lattices and ion traps), we come to one that's a little controversial. It's the only remaining candidate I can describe off the top of my head without doing some more background reading, though, so I will plunge ahead boldly...
Liquid state Nuclear Magnetic Resonance (NMR) was first suggested as a technology for quantum information processing in 1997, and some demonstration experiments followed very quickly, as there's relatively little infrastructure required. The…
Last week, I wrote about ion traps as a possible quantum computing platform, which are probably the best established of the candidate technologies. This week, I'll talk about something more speculative, but closer to my own areas of research: neutral atoms in optical lattices.
This is a newer area, which pretty much starts with a proposal in 1999. There are a bunch of different variants of the idea, and what follows will be pretty general.
What's the system? Optical lattices use the interaction between atoms and a standing wave of light to produce a periodic array of wells in which individual…
Some time back, I wrote about what you need to make a quantum computer. Given that it's election season, I thought I'd revisit the topic by looking in detail at the candidate technologies for quantum computing.
The first up is Ion Trap Quantum Computing, probably the most well-established of any of the candidates. The field really starts with Dave Wineland's group at NIST, though there is outstanding stuff being done by Chris Monroe at Maryland, and a host of others.
So, how do they stack up? Here are the facts about ion traps as a quantum computing system:
What's the system? Ion traps are,…