Physics
So, you find yourself living in the San Francisco Bay area, and you maybe have a dog who would like to know something about relativity, or you maybe want to someday have a dog who will want to know something about relativity, or you maybe want to know something more about relativity yourself, in case you ever find yourself cornered in a dark alley by a Rhodesian ridgeback who snarls "Explain time dilation to me, or I'll eat your face!" Well, in that case, you definitely want to be at Kepler's Books in Menlo Park on the evening of June 14th, when I'll be doing a book promotion thing for How to…
"The doctors realized in retrospect that even though most of these dead had also suffered from burns and blast effects, they had absorbed enough radiation to kill them. The rays simply destroyed body cells - caused their nuclei to degenerate and broke their walls." -John Hersey
Everyone (well, almost everyone) recognizes that radiation is bad for you. And the higher the energy of the radiation, the worse it is for you. The reason is relatively straightforward.
Image credit: Environmental Protection Agency.
When high energy particles (or photons) come into contact with normal matter, they…
There's been a bunch of discussion recently about philosophy of science and whether it adds anything to science. Most of this was prompted by Lawrence Krauss's decision to become the Nth case study for "Why authors should never respond directly to bad reviews," with some snide comments in an interview in response to a negative review of his latest book. Sean Carroll does an admirable job of being the voice of reason, and summarizes most of the important contributions to that point. Some of the more recent entries to cross my RSS reader include two each from 13.7 blog and APS's Physics Buzz.
I…
I go back and forth about the whole question of scientific accuracy in tv shows and movies. On the one hand, I think that complaining "Explosions don't make noise in space!" is one of the worst forms of humorless dorkitude, and I'm generally happy to let bad science slide by in the service of an enjoyable story. On the other hand, though, I am a professional physicist, and it's hard to turn that off completely.
Weirdly, one thing that tends to push me toward complaining about the science is when people start doing "The Science of ______" pieces, as both MSNBC and io9 did for The Avengers, and…
Some time back, I reviewed a cool book about Fermi problems by Aaron Santos, then a post-doc at Michigan. In the interim, he's taken a faculty job at Oberlin, written a second book on sports-related Fermi problems, and started a blog, none of which I had noticed until he emailed me. Shame on me.
Anyway, his new book is just out, and he's running an estimation contest with a signed copy as the prize. So, if you're the sort of person who enjoys Fermi problems, read his post then grab a convenient envelope and start estimating on the back. You have until June 1.
Enough slagging of beloved popularizers-- how about some hard-core physics. The second of three extremely cool papers published last week is this Nature Physics paper from the Zeilinger group in Vienna, producers of many awesome papers about quantum mechanics. Ordinarily, this would be a hard paper to write up, becase Nature Physics are utter bastards, but happily, it's freely available on the arxiv, and all comments and figures are based on that version.
You're just obsessed with Zeilinger, aren't you? All right, what have they done this time? The title is "Experimental delayed-choice…
A few more links that have turned up of people talking about either How to Teach Physics to Your Dog and How to Teach Relativity to Your Dog:
Andrew Johnston has a review of the UK edition, praising it because "it's bang up to date, and goes beyond the basic quantum concepts into more complex areas like decoherence, entanglement and quantum teleportation," which I like to see because that's one of the things I especially wanted to do.
Natasha Zaleski, a grad student, has a review of How to Teach Relativity to Your Dog, which is good but not great, because it hit the usual failure mode: the…
"This is the way I wanna die. Torn apart by angry fans who want me to play a different song." -Regina Spektor
You're familiar with the classic picture of a black hole: a dark, dense region at the center from which no light can escape, surrounded by an accretion disk of matter that constantly feeds it, shooting off relativistic jets in either direction.
Image credit: University of Warwick, retrieved from bordermail.com.au.
This is a pretty accurate picture of active black holes. But most black holes aren't active, and of the ones that are, they aren't active most of the time!
Most people…
A week or so ago, lots of people were linking to this New York Review of Books article by Steven Weinberg on "The Crisis of Big Science," looking back over the last few decades of, well, big science. It's somewhat dejected survey of whopping huge experiments, and the increasing difficulty of getting them funded, including a good deal of bitterness over the cancellation of the Superconducting Supercollider almost twenty years ago. This isn't particularly new for Weinberg-- back at the APS's Centennial Meeting in Atlanta in 1999, he gave a big lecture where he spent a bunch of time fulminating…
I've been busily working on something new, but I'm beginning to think I've been letting the perfect be the enemy of the good-enough-for-this-stage, so I'm setting it aside for a bit, and trying to get caught up with some of the huge number of things that have been slipping. Which includes getting the oil changed in my car, hence, I'm sitting in B&N killing time, which is a good excuse to do some ResearchBlogging.
Last week was a banner week for my corner of physics, with three really cool experiments published. Two of those are on the arxiv, which means I can use images from the paper (…
"And what I wanted to do was, I wanted to explore problems and areas where we didn't have answers. In fact, where we didn't even know the right questions to ask." -Donald Johanson
You can learn an awful lot about the Universe by asking it different questions than you asked about it previously. If all you ever used were your own senses, there would be an awful lot to learn, but you would be severely limited.
Image credit: Kerri Rankin Thoreson.
Even from the highest mountaintops, for example, you'd never be able to distinguish whether the Earth was round like a sphere or flat as a pancake,…
I've been falling down on the shameless self-promotion front, lately, but that doesn't mean I'm not tracking How to Teach Relativity to Your Dog obsessively, just that I'm too busy to talk about it. Happily, other people have been nice enough to talk about it for me, in a variety of places:
The most significant, in terms of probable impact on sales, is this excerpt at BoingBoing, which is the text for the dog dialogue from Chapter 8. This is the same dialogue that became the "Looking for the Bacon Boson" video, and, indeed, they were nice enough to include the video in the post, too. Woo-hoo…
For something I'm working on, I'm trying to come up with good examples of interdisciplinarity making a difference in science. Specifically, I'm looking for cases where somebody with training in one field was able to make a major advance in another field because their expertise let them look at a problem in a different way, and bring a different set of techniques to bear on it.
I can think of a decent number of examples within physics-- techniques from NMR being adopted by atomic physicists, atomic physics techniques being used to address problems in condensed matter, the whole Higgs boson…
Over in Twitter-land, there's a bunch of talk about how this is National Physics Day. I don't know how I missed that, what with all the media coverage and all.
I have too much other stuff to do to generate any detailed physics content today, so we'll settle for an informal poll to mark the occasion:
Who is your favorite physicist, other than Einstein, Newton, or Feynman?
The qualifier is just to knock out the too-obvious answers, and force a little more thought. Everybody likes Einstein and Newton and Feynman, but we hear about them all the time. For a major holiday like Physics Day, let's…
"Science progresses best when observations force us to alter our preconceptions." -Vera Rubin
I want you to think about the Universe. The whole thing; about everything that physically exists, both visible and invisible, about the laws of nature that they obey, and about your place in it.
It's a daunting, terrifying, and simultaneously beautiful and wondrous thing, isn't it?
Image credit: NASA, ESA, S. Beckwith (STScI) and the HUDF Team.
After all, we spend our entire lives on one rocky world, that's just one of many planets orbiting our Sun, which is just one star among hundreds of billions…
Yesterday's post on applying intro physics concepts to the question of how fast and how long football players might accelerate generated a bunch of comments, several of them claiming that the model I used didn't match real data in the form of race clips and the like. One comment in particular linked to a PDF file including 10m "splits" for two Usain Bolt races, including a complicated model showing that he was still accelerating at 70m into the race. How does this affect my argument from yesterday?
Well, that document is really a guide to fancy fitting routines on some sort of graphing…
Over at Grantland, Bill Barnwell offers some unorthodox suggestions for replacing the kickoff in NFL games, which has apparently been floated as a way to improve player safety. Appropriately enough, the suggestion apparently came from Giants owner John Mara, which makes perfect sense giving that the Giants haven't had a decent kick returner since Dave Meggett twenty years ago, and their kick coverage team has lost them multiple games by giving up touchdowns to the other team.
Anyway, one of Barnwell's suggestions invoked physics, in a way that struck me as puzzling:
Idea 3: The receiving team…
My Google vanity search for my name and the book titles is really frustratingly spotty, often missing things in major news outlets that I later find by other means. For example, I didn't get a notification about this awesome review in the Guardian, from their children's book section:
I am a ten year old who likes Physics. What is Physics, you might ask! Well, Physics is the science of pretty much everything around you. It asks big questions like where did we come from? How long ago was the Big Bang? Quantum Physics is the part of physics which talks about atomic and sub atomic particles,…
I'm re-instituting the quota system for the moment-- no blogging until I make some substantive progress on the current work-in-progress-- but I'll throw out a quick post here to note a media appearance: Physics World has a podcast about books on quantum physics up today:
Since its inception in the early part of the 20th century, the theory of quantum mechanics has consistently baffled many of the great physicists of our time. But while the ideas of quantum physics are challenging and notoriously weird, they seem to capture the public imagination and hold an enduring appeal. Evidence of this…
A passing mention in last week's post about impostors and underdogs got me thinking about Michael Faraday again, and I went looking for a good biography of him. The last time looked, I didn't find any in electronic form, probably because the Sony Reader store has a lousy selection. I got a Nook for Christmas, though, and this time, Alan Hirshfeld's 2006 biography, The Electric Life of Michael Faraday was right there, so I picked it up and read it over the weekend.
It was a fast read, both because this is a short popular biography-- 250-odd pages-- and because Faraday's life story makes for…