New and Exciting in PLoS ONE

There are 23 new articles in PLoS ONE published last Friday (sorry, I'm late....). As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:

ARNTL (BMAL1) and NPAS2 Gene Variants Contribute to Fertility and Seasonality:

Circadian clocks guide the metabolic, cell-division, sleep-wake, circadian and seasonal cycles. Abnormalities in these clocks may be a health hazard. Circadian clock gene polymorphisms have been linked to sleep, mood and metabolic disorders. Our study aimed to examine polymorphisms in four key circadian clock genes in relation to seasonal variation, reproduction and well-being in a sample that was representative of the general population, aged 30 and over, living in Finland. Single-nucleotide polymorphisms in the ARNTL, ARNTL2, CLOCK and NPAS2 genes were genotyped in 511 individuals. 19 variants were analyzed in relation to 31 phenotypes that were assessed in a health interview and examination study. With respect to reproduction, women with ARNTL rs2278749 TT genotype had more miscarriages and pregnancies, while NPAS2 rs11673746 T carriers had fewer miscarriages. NPAS2 rs2305160 A allele carriers had lower Global Seasonality Scores, a sum score of six items i.e. seasonal variation of sleep length, social activity, mood, weight, appetite and energy level. Furthermore, carriers of A allele at NPAS2 rs6725296 had greater loadings on the metabolic factor (weight and appetite) of the global seasonality score, whereas individuals with ARNTL rs6290035 TT genotype experienced less seasonal variation of energy level. ARNTL and NPAS2 gene variants were associated with reproduction and with seasonal variation. Earlier findings have linked ARNTL to infertility in mice, but this is the first time when any polymorphism of these genes is linked to fertility in humans.

Actuating Mechanism and Design of a Cylindrical Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer:

Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

Selection on Alleles Affecting Human Longevity and Late-Life Disease: The Example of Apolipoprotein E:

It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E) and non-genetic risk factors (gender, diet, smoking, alcohol, exercise) that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the ε2 and ε3 alleles of the gene at the expense of the ε4 allele was predicted from the model. The ε2 allele frequency was found to increase slightly more rapidly than that for ε3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity.

Quantifying Recent Ecological Changes in Remote Lakes of North America and Greenland Using Sediment Diatom Assemblages:

Although arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems. We synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (β-diversity) during the 20th century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19th century and the prior ~250 years (Little Ice Age). For both arctic and alpine lakes, β-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20th-century diatom β-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3â], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948-2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends. The ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites with elevated 20th-century diatom β-diversity: the Arctic where temperatures are increasing most rapidly, and mid-latitude alpine lakes impacted by high Nr deposition rates. We predict that remote lakes will continue to shift towards new ecological states in the Anthropocene, particularly in regions where these two forcings begin to intersect geographically.

Phytoplankton Biogeography and Community Stability in the Ocean:

Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years. Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode of community evolution. If community assembly were controlled by local environmental selection rather than dispersal, environmental perturbations would change community composition, yet, this could revert once environmental conditions returned to previous-like states. We analyzed phytoplankton community composition across >104 km latitudinal transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls community structure. Consistent with these results, three independent fossil records of marine diatoms over the past 250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth's climate. Changes in habitat conditions dramatically alter community structure, yet, we conclude that the high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the tempo of community evolution.

Categories

More like this

Yup, traveling, but still manged to take a quick look at what's new in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley,…
On Fridays I usually take a look at new papers in all seven PLoS journals. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea,…
First piece of news, there is a new PLoS app for iPad. Even if you don't have this new gadget, you can download it and test-run it and post a review here - we appreciate all the feedback. Second piece of news is that the PLoS physical office in San Francisco is moving to a new location - it was…
There are 17 new articles in PLoS ONE published last night. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook…