There are 35 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week - you go and look for your own favourites:
Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?:
Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics.
Large-Scale Movement and Reef Fidelity of Grey Reef Sharks:
Despite an Indo-Pacific wide distribution, the movement patterns of grey reef sharks (Carcharhinus amblyrhynchos) and fidelity to individual reef platforms has gone largely unstudied. Their wide distribution implies that some individuals have dispersed throughout tropical waters of the Indo-Pacific, but data on large-scale movements do not exist. We present data from nine C. amblyrhynchos monitored within the Great Barrier Reef and Coral Sea off the coast of Australia. Shark presence and movements were monitored via an array of acoustic receivers for a period of six months in 2008. During the course of this monitoring few individuals showed fidelity to an individual reef suggesting that current protective areas have limited utility for this species. One individual undertook a large-scale movement (134 km) between the Coral Sea and Great Barrier Reef, providing the first evidence of direct linkage of C. amblyrhynchos populations between these two regions. Results indicate limited reef fidelity and evidence of large-scale movements within northern Australian waters.
Evolutionary Divergence in Brain Size between Migratory and Resident Birds:
Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size) than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68%) of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better.
How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?:
We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations.
Background
A systematic review was conducted for the association between animal feeding operations (AFOs) and the health of individuals living near AFOs. The review was restricted to studies reporting respiratory, gastrointestinal and mental health outcomes in individuals living near AFOs in North America, European Union, United Kingdom, and Scandinavia. From June to September 2008 searches were conducted in PUBMED, CAB, Web-of-Science, and Agricola with no restrictions. Hand searching of narrative reviews was also used. Two reviewers independently evaluated the role of chance, confounding, information, selection and analytic bias on the study outcome. Nine relevant studies were identified. The studies were heterogeneous with respect to outcomes and exposures assessed. Few studies reported an association between surrogate clinical outcomes and AFO proximity. A negative association was reported when odor was the measure of exposure to AFOs and self-reported disease, the measure of outcome. There was evidence of an association between self-reported disease and proximity to AFO in individuals annoyed by AFO odor. There was inconsistent evidence of a weak association between self-reported disease in people with allergies or familial history of allergies. No consistent dose response relationship between exposure and disease was observable.
Human Mammary Epithelial Cells Exhibit a Bimodal Correlated Random Walk Pattern:
Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.
Localization of Canine Brachycephaly Using an Across Breed Mapping Approach:
The domestic dog, Canis familiaris, exhibits profound phenotypic diversity and is an ideal model organism for the genetic dissection of simple and complex traits. However, some of the most interesting phenotypes are fixed in particular breeds and are therefore less tractable to genetic analysis using classical segregation-based mapping approaches. We implemented an across breed mapping approach using a moderately dense SNP array, a low number of animals and breeds carefully selected for the phenotypes of interest to identify genetic variants responsible for breed-defining characteristics. Using a modest number of affected (10-30) and control (20-60) samples from multiple breeds, the correct chromosomal assignment was identified in a proof of concept experiment using three previously defined loci; hyperuricosuria, white spotting and chondrodysplasia. Genome-wide association was performed in a similar manner for one of the most striking morphological traits in dogs: brachycephalic head type. Although candidate gene approaches based on comparable phenotypes in mice and humans have been utilized for this trait, the causative gene has remained elusive using this method. Samples from nine affected breeds and thirteen control breeds identified strong genome-wide associations for brachycephalic head type on Cfa 1. Two independent datasets identified the same genomic region. Levels of relative heterozygosity in the associated region indicate that it has been subjected to a selective sweep, consistent with it being a breed defining morphological characteristic. Genotyping additional dogs in the region confirmed the association. To date, the genetic structure of dog breeds has primarily been exploited for genome wide association for segregating traits. These results demonstrate that non-segregating traits under strong selection are equally tractable to genetic analysis using small sample numbers.
- Log in to post comments