New and Exciting in PLoS this week

It's Monday night, so let's see what just got published in PLoS Biology, PLoS Medicine, PLoS ONE and PLoS Neglected Tropical Diseases:

Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock:

Magnetic fields influence endogenous clocks controlling the sleep-wake cycle of animals, but the underyling mechanisms are unclear. Birds that can do magnetic compass orientation also depend on light, and the blue-light photopigment cryptochrome was proposed to act as a navigational magnetosensor. Here we tested the role of cryptochrome as a light-dependent magnetosensor of the clock in the fruit fly Drosophila melanogaster. In wild-type flies we found that constant magnetic fields slowed down the speed of the clock in a dose-dependent manner--but only in the presence of blue light. In mutants lacking functional cryptochrome, the magnetic fields had no significant effects on the endogenous clock, whereas the effects were enhanced after overexpression of cryptochrome. Our data suggest that cryptochrome works as a magnetosensor in the endogenous clock when it is excited by blue light. Our work supports previous data showing that fruit flies need functional cryptochrome to perceive a magnetic field, demonstrating that the interaction of cryptochome and magnetic fields are not just for the birds.

Low Genetic Differentiation across Three Major Ocean Populations of the Whale Shark, Rhincodon typus:

Whale sharks are a declining species for which little biological data is available. While these animals are protected in many parts of their range, they are fished legally and illegally in some countries. Baseline biological and ecological data are needed to allow the formulation of an effective conservation plan for whale sharks. It is not known, for example, whether the whale shark is represented by a single worldwide panmictic population or by numerous, reproductively isolated populations. Genetic analysis of population structure is one essential component of the baseline data required for whale shark conservation. We have identified 8 polymorphic microsatellites in the whale shark and used these markers to assess genetic variation and population structure in a panel of whale sharks covering a broad geographic region. This is the first record of microsatellite loci in the whale shark, which displayed an average of 9 alleles per locus and mean Ho = 0.66 and He = 0.69. All but one of the eight loci meet the expectations of Hardy-Weinberg equilibrium. Analysis of these loci in whale sharks representing three major portions of their range, the Pacific (P), Caribbean (C), and Indian (I) Oceans, determined that there is little population differentiation between animals sampled in different geographic regions, indicating historical gene flow between populations. FST values for inter-ocean comparisons were low (PÃC = 0.0387, CÃI = 0.0296 and PÃI = â0.0022), and only CÃI approached statistical significance (p = 0.0495). We have shown only low levels of genetic differentiation between geographically distinct whale shark populations. Existing satellite tracking data have revealed both regional and long-range migration of whale sharks throughout their range, which supports the finding of gene flow between populations. Whale sharks traverse geographic and political boundaries during their life history and interbreed with animals from distant populations; conservation efforts must therefore target international protection for this species.

Tools for Assessing Neuropathic Pain:

According to the latest definition, the term neuropathic pain refers to pain arising as a direct consequence of a lesion or disease affecting the somatosensory system [1].

When physicians and researchers use the term assessment of neuropathic pain, they may be referring to two distinct types of assessment: (1) assessing pain intensity and quality and possibly their treatment-induced changes, and (2) diagnosing neuropathic (as opposed to non-neuropathic) pain.

Pain is a complex experience that depends strongly on cognitive, emotional, and educational influences. Hence the pressing need for tools that can measure pain objectively. We distinguish four different levels of "objectivity": (1) laboratory tests that use quantitative tools and measure an objective response; (2) quantitative sensory testing, a measure that despite using quantitative, graded stimuli inevitably relies on the patient's evaluation; (3) bedside examination, which relies on the physician's experience and the patient's ability and willingness to collaborate; and (4) pain questionnaires, tools that depend entirely on the patient. We review each of these in turn, drawing in part on our previous work in this field [2].

The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors:

Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC.

Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly:

All visual information reaching the brain is transmitted by retinal ganglion cells, each of which is sensitive to a small region of space known as its receptive field. Each of the 20 or so distinct ganglion cell types is thought to transmit a complete visual image to the brain, because the receptive fields of each type form a regular lattice covering visual space. However, within each regular lattice, individual receptive fields have jagged, asymmetric shapes, which could produce "blind spots" and excessive overlap, degrading the visual image. To understand how the visual system overcomes this problem, we used a multielectrode array to record from hundreds of ganglion cells in isolated patches of peripheral primate retina. Surprisingly, we found that irregularly shaped receptive fields fit together like puzzle pieces, with high spatial precision, producing a more homogeneous coverage of visual space than would be possible otherwise. This finding reveals that the representation of visual space by neural ensembles in the retina is functionally coordinated and tuned, presumably by developmental interactions or ongoing visual activity, producing a more precise sensory signal.

A Complex Cell Division Machinery Was Present in the Last Common Ancestor of Eukaryotes:

The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure) or analogous (have distinct evolutionary origins). Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95%) are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins) were already present in the last common ancestor of all eukaryotes (LECA) and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a complex ancestor for all contemporary eukaryotes.

Categories

More like this

Yup, it's Monday evening: Light Activates Output from Evening Neurons and Inhibits Output from Morning Neurons in the Drosophila Circadian Clock: Living organisms have evolved circadian clocks that anticipate daily changes in their environment. Their clockwork is fully endogenous, but can be reset…
Another Tuesday night, another embarrassment of riches on PLoS ONE (yeah, yeah, I work there, OK). There are 35 new articles published today and it is hard for me to pick and choose as so many are interesting to me, including a couple I may have to write separate posts about (and test the new BPR3…
I had no time to read this in detail and write a really decent overview here, perhaps I will do it later, but for now, here are the links and key excerpts from a pair of exciting new papers in PLoS Biology and PLoS ONE, which describe the patterns of expression of a second type of cryptochrome…
As always on Monday night, there are new articles published in PLoS Biology and PLoS Medicine. Here are some of the highlights: Shedding Light on Animal Cryptochromes: Anyone who's neglected a houseplant for any length of time knows that plants can't survive without light. But it's more…